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Abstract

Dynamic instability and transient vibrations of a pinned beam with transverse magnetic fields and
thermal loads are studied. The magnetoelastic model, whose beam thickness and the deflection are very
small compared with the length, is taken for analysis. Applying the Hamilton’s principle, the equation of
motion with damping factor is derived. The governing equation is reduced to the Mathieu equation by
Galerkin’s method with the assumed mode shape. The incremental harmonic balance (IHB) method is
applied to analyze the dynamic instability. The amplitude versus time behavior of the system is investigated
by using the Runge–Kutta method. The study shows that the instability and transient vibratory behaviors
of the beam are influenced by the magnetic fields, thermal loads, and the frequencies of oscillation of the
transverse magnetic field. The beat phenomenon and primary resonance are presented and discussed when
the frequencies of the oscillating transverse magnetic field are close to the fundamental natural frequency of
the system.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The field of magneto elasticity has already been developing since past decades. The problems of
electromagnet-mechanics on structural instability are very important in industrial applications.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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One of the reviews on magnetic elasticity has been written by Ambartsumian [1]. Moon and Pao
[2,3] experimentally discovered the magnetoelastic buckling and parametric instability of a
cantilever beam-plate in a uniform transverse magnetic field. Through their study, a mathematical
model is proposed with distributed magnetic forces and torques, which has propelled many
investigations. Miya et al. [4,5] applied experimental and finite element methods to study
magnetoelastic buckling on a cantilevered beam-plate. Eringen [6] derived the fields equations for
elastic plates subjected to small dynamical loads and electromagnetic fields. The dynamic stability
of a plate strip in a magnetic field parallel to the plan of motion is considered by Lee [7] with the
destabilizing effect due to the magnetic damping. Shih et al. [8] derived the equation of motion for
elastic beam under pulsating axial load and oscillating transverse magnetic field.
Recently, Tagaki et al. [9] demonstrated another phenomenon in magnetoelastic interactions,

i.e., the increase of natural frequency of a ferromagnetic plate due to an increasing magnetic
intensity. In order to analyze these experimental phenomenon, several theoretical models and
numerical programs have been developed for studying the effect of magnetoelastic interactions
upon the mechanical behavior of ferromagnetic structures [10–14]. However, thermal effect/
buckling may be an undesired phenomenon for the structures because the properties of their static
and dynamic characteristic would be changed. Most of the studies in the literature for vibration or
instability of structures under an applied magnetic field are analyzed by considering the
temperature of the structure and the conductivity of the material as a constant. The effect of
variation of thermal loads on the magnetic force exerted on the structure was not considered. In
reality, the magnetic force and the temperature variation have the interactive effect on the
vibration and instability behavior of the structure. The means of estimation of thermal effect have
to be found. The interaction between magnetic fields and a uniform temperature increment of the
beam as one of the electromagnet-solid problem is a fundamental subject.
The interests of the present study are the dynamic instability and transient vibrations of a beam

under magnetic fields and thermal loads. In this study, the equation of motion is derived by
Hamilton’s principle in which the damping parameter and induced currents are considered. Using
Galerkin’s method, the governing equation is reduced to a time-dependent Mathieu equation. In
order to analyze the dynamic instability of this system, the incremental harmonic balance (IHB)
method is adopted. The IHB method has been successfully applied to various types of linear and
nonlinear structural systems [15–18]. Using the Runge–Kutta method, the transient amplitude
versus time are determined from the model equation with different magnetic fields, thermal loads,
and frequencies of the structure subjected to oscillating transverse magnetic field. The numerical
results display some interesting characteristics on vibration of the beam having magnetic fields
and thermal loads.
2. Equation of motion

In this study, an elastic beam of thickness h, width d, and length L which is pinned at its ends
is considered, as shown in Fig. 1. An applied alternating uniform transverse magnetic field
B0 ¼ Bm cosð$tÞ~j in y-direction and a uniform temperature increment DT are applied to the
beam. The beam is initially straight having uniform thickness and the material property is
assumed to be linearly elastic, isotropic and homogeneous. The cross section of the beam is
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Fig. 1. The model of a beam.
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symmetric. It is also assumed that the beam thickness and the deflection compared with the length
are very small. As a consequence, the shear and inertia effects are neglected.
2.1. Hamilton’s principle

The integral of the Langrangian function, IL, can be written as

IL ¼

Z t2

t1

ðK þ W � UÞ dt þ

Z t2

t1

W c dt; (1)

where K is the kinetic energy of the system, U is the potential energy, and W is the work of
externally applied force, and W c is the work of nonconservative force. The variation of IL leads to

dIL ¼

Z t2

t1

dðK þ W � UÞ dt þ

Z t2

t1

dW c dt ¼ 0: (2)

For a small deflection, the associated linear strain takes the form �xx ¼ qu=qx; where u is the
longitudial displacement. The elastic strain energy is expressed by the formula [19]:

U ¼

Z L

0

EI

2

q2v
qx2

� �2

dx þ

Z L

0

A

2E
E�xx � gðDTÞ½ �

2 dx; (3)

where E is the Young’s modulus, I the moment of inertia of the cross section, v the transversal
displacement, A the cross-section area, and gðDTÞ the stress–temperature coefficient. Then,

K ¼
1

2

Z L

0

m
qv

qt

� �2

dx; W T ¼

Z L

0

c
qv

qx
dx;

W P ¼

Z L

0

Nðds � dxÞ ¼
1

2

Z L

0

Z x

0

p dx
� �

qv

qx

� �2

dx;

dW c ¼

Z L

0

cd
qv

qt

� �
dvdx and W ¼ W T þ W P; ð4Þ

where m and c are the mass and the body couple of the beam per unit length, respectively. N is the
axial compressive force of the beam, p is the body force of the beam per unit length, and cd is the
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damping constant. Eq. (2) can be written as

dIL ¼

Z t2

t1

Z L

0

m
q2v
qt2

þ
qc

qx
þ

q
qx

Z x

0

p dx
� �

qv

qx

� �
þ EI

q4v
qx4

�

� EA
q
qx

qu

qx
�

gðDTÞ

E

� �
qv

qx

� �
þcd

qv

qt

�
dv dx dt

þ

Z t2

t1

EI
q2v
qx2

q
qx

ðdvÞ � EI
q3v
qx3

dv � cdv �

Z x

0

p dx
� �

qv

qx
dv

�

þEA
qu

qx
�
gðDTÞ

E

� �
qv

qx
d
�����

L

0

dt �

Z t2

t1

Z L

0

EA
q
qx

qu

qx
�

gðDTÞ

E

� �
du dx dt

þ

Z t2

t1

EA
qu

qx
�

gðDTÞ

E

� �
du

����
L

0

dt �

Z L

0

m
qv

qt
dv

� �����
t2

t1

dx ¼ 0: ð5Þ

Assuming pinned support conditions with no horizontal and vertical displacement at x= 0 and L,
the associated boundary conditions can be defined as

duð0Þ ¼ duðLÞ ¼ dvð0Þ ¼ dvðLÞ ¼ 0;

vð0Þ ¼ vðLÞ ¼ 0 and v00ð0Þ ¼ v00ðLÞ ¼ 0: ð6Þ

The equilibrium equations of motion with the associated boundary conditions can be obtained as

EA
q
qx

qu

qx
�

gðDTÞ

E

� �
¼ 0; (7)

m
q2v
qt2

þ cd
qv

qt
þ EI

q4v
qx4

þ
qc

qx
þ

q
qx

Z x

0

p dx
� �

qv

qx

� �
� EA

q
qx

qu

qx
�

gðDTÞ

E

� �
qv

qx

� �
¼ 0: (8)

Eq. (7) will be satisfied with the assumption

qu

qx
�

gðDTÞ

E
¼ constant ¼ d̄ðDTÞ; (9)

where d̄ðDTÞ is equal to the average strain of the system, therefore

d̄ðDTÞ ¼
1

L

Z L

0

qu

qx
�

gðDTÞ

E

� �
dx ¼ �

gðDTÞ

E
: (10)

Substituting Eq. (10) into Eq. (8), the equation of motion is obtained

m
q2v
qt2

þ cd

qv

qt
þ EI

q4v
qx4

þ
qc

qx
þ

q
qx

Z x

0

p dx
� �

qv

qx

� �
þ AgðDTÞ

q2v
qx2

¼ 0: (11)
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2.2. Electromagnetic force F and torque c

The electromagnetic force F and torque c acting on a volume V as shown by King and Prasad
[20] are

F ¼

Z
sðEe þ _r	 B0Þ 	 B0 þ ðM 
 rÞB0½ �dV ; (12a)

c ¼

Z
r	 dFþM	 B0ð ÞdV ; (12b)

where Ee and B0 are the induced electric field and the magnetic field, s is the conductivity of the
material, r is the vector from an arbitary origin to the element dV, _r is the velocity of body motion,
and M is the volume density of magnetization in the body. The first term in c is known as body
torque and the second term in c is the torque on a magnetic dipole in a uniform field. In this study,
B0 is considered as a uniform field, therfore, ðM 
 rÞB0 ¼ 0: It has been shown by Shih et al. [8]
that

R
v
sEe 	 B0 dV ¼ 0 and

R
v
ðr	 dFÞdV ¼ 0 because of the symmetric. Eqs. (12a) and (12b) can

be simliplied as

F ¼

Z
sð_r	 B0Þ 	 B0 dV ; (13)

c ¼

Z
M	 B0 dV ; (14)

where M ¼ wðm0mrÞ
�1B; w ¼ 1� mr is the susceptibility, m0 is the permeability of the vacuum, mr is

the relative permeability, and B is the magnetic induction vector.
3. Analytical procedure

3.1. Displacement function

For the pinned beam, the displacement function can be written as

vðx; tÞ ¼
X

n¼1;2;:::

wnðtÞ sin lnx; 0pxpL; (15)

where l1 ¼ p=L for the first mode.
An inextensible beam is assumed, thereforeZ x

0

1þ v0
2
ðx; tÞ

h i1=2
dx ¼ s; (16)

where s is the length of the beam from 0 to x. Differentiating Eq. (16) with respect to t becomesZ x

0

v0 _v0

ð1þ v02Þ1=2

" #
dxþ ½1þ v0

2
�1=2 _x ¼ 0: (17)
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For a small deflection ½1þ v02�1=2 � 1; then substituting this into Eq. (13), the velocity in
x-direction can be derived as

_x ¼ _rðx;wÞ ¼ �

Z x

0

v_v0 dx ¼
X

n¼1;2;:::

�
l2n
2

� �
wn _wn x þ

ln

2

� �
sin 2lnx

� �
; (18)

F ¼ p~i ¼
X

n¼1;2;:::

s
4

� �
l2nh dB2

m x þ
ln

2

� �
sin 2lnx

� �
1þ cos 2$tð Þ wn _wn

~i: (19)

The magetization M can be derived using the same way as presented in Ref. [3], then the body
couple can be obtained as

c ¼

Z
M	 B0 dV ¼

X
n¼1;2;:::

lnFnd cos lnxð1þ cos 2$tÞwn
~k; (20)

where Fn ¼ w2B2
m sinhðlnh=2Þ=ðm0mrlnDnÞ and Dn ¼ mrsinhðlnh=2Þ þ coshðlnh=2Þ:

Substituting Eqs. (18–20) into Eq. (11) leads to a linear operator PðwÞ:

PðwÞ ¼
X

n¼1;2:::

m €wn þ cd _wn � l2nFndð1þ cos 2$tÞwn þ EIl4nwn � Al2ngðDTÞwn

" #(
sin lnx

�
s
4

� �
l3nhdB2

m 1þ cos 2$tð Þw2
n _wn 	 ln

x2

2
þ

1

4l2n
ð1� 2 cos 2lnxÞ

" #
sin lnx

(

� x þ
1

2ln

sin 2lnx

� �
cos lnx

))
¼ 0: ð21Þ

3.2. Temperature effects

The conductivity s of a material is simply reciprocal of its resistivity, so s ¼ 1=W; where W is the
resistivity of the material. The relation between the increased temperature DT and resistivity is
considered as

W ¼ W0 þ W0arDT ; (22)

where W0 is the resistivity and ar the temperature coefficient of resistivity.
In this study, the linear elastic stress–temperature coefficient is defined as gðDTÞ ¼ EA aDT ;

where a is the coefficient of thermal expansion. The thermal expansion is cancelled out by
equal and opposite contraction caused by the restraining force Pt: This is because in this case the
total strain is zero (no displacement) for both ends. Therefore, the magnitude of the restraining
force is

Pt ¼ �EAaDT (23)

If the beam is slender, then it will buckle before the material reaches its yield stress. The critical
load of a compressed ideal beam/column is affected by the boundary conditions. A low-carbon
steel is considered, and Young’s modulus E ¼ 1:94	 1011 Pa; density r ¼ 7930kg=m3; length
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L ¼ 0:4m; width d ¼ 2:0	 10�2 m; and L=h ¼ 100 are chosen in this study. The critical load
Pcr ¼ p2EI=l2 given by the Euler bulking formula is used for the first mode. Thus, the critical load
Pcr is 1276.5N and the critical stress scr is 15.956Mpa. The value of the critical stress is less than
the yield stress of the material. Equating the Euler bulking formula to the restraining force Pt, the
critical buckling temperature becomes

DT cr ¼
p2

a
rr

l

� �2
¼

p2

a_2
; (24)

where rr is the radius of gyration and _ is the slenderness ðl=rrÞ: This result clearly shows that
the amount of restraint required is not large for slender sections to reach the buckling
temperature.
3.3. Galerkin’s method

The first mode (n=1) is considered in this study, which means l ¼ p=L: Taking sin lx as the
base function, Galerkin’s equation leads toZ L

0

PðwÞ sin lx dx ¼ 0: (25)

By simplifying Eq. (25), a time-dependent differential equation is derived as follows:

d2w

dt2
þ 2½kþ Bð1þ cos 2$tÞw2�

dw

dt
þ ðo2

L � x cos 2$tÞw ¼ 0; (26)

where r is the density of the beam,

2k ¼
cd

rhd
; 2B ¼ 2sB2

ml
2 �8l2L2 � 18

192r

� �
; o2

L ¼ o2
0 1�

B2
r

B2
c

�
EAaDT

Pcr

 !
;

o2
0 ¼

EIl4

rhd
; B2

r ¼
B2

m

2
; B2

c ¼
EIl3m0mrD

2w2d sinhðlh=2Þ
; Pcr ¼ EIl2 ¼ EI

p2

L2
;

x ¼
Fl2

rh
and s ¼

1

W0 þ W0arDT
:

One recognizes o0 as the natural frequency of the pinned beam in a zero load, oL as the
fundamental natural frequency of the system, and Bc as the buckling field of the system
for the first mode. Since the beam is most likely to be considered at the first region of
instability, the following set of variables is used [15,16]: the reduced vibration natural
frequency O ¼ $=oL; a new time scale t ¼ $t; the reduced linear viscous damping k1 ¼ k=oL;
the nonlinear damping coefficient k2 ¼ B=oL; and the new coefficient of excitation 2j ¼ x=o2

L:
Eq. (26) becomes

O2 d
2w

dt2
þ 2O½k1 þ k2ð1þ cos 2tÞw2�

dw

dt
þ ð1� 2j cos 2tÞw ¼ 0: (27)
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3.4. Incremental harmonic balance (IHB) method and linearized equation

The IHB procedure has been provided by Lau and Cheung [15], Lau, et al. Wu [16] and Pierre
and Dowell [17]. The first step is a Newton–Raphson procedure. The current state of vibration
corresponding to a point ðO0;j0Þon instability boundary is denoted by w0: A neighboring state is
reached through a parameter incrementation:

j ¼ j0 þ Dj; O ¼ O0 þ DO; w ¼ w0 þ Dw: (28)

Substituting Eq. (28) into Eq. (27) and neglecting the nonlinear terms of Dj; DO; Dw; a linearized
incremental equation is obtained:

O2
0D €w þ 2O0 k1 þ k2 1þ cos 2tð Þw2

0

� �
D _w þ 1� 2j0 cos 2t

� �
Dw

þ 4O0k2 1þ cos 2tð Þw0DwD _w

¼ R þ 2Djw0 cos 2t� 2DOO0 €w0 � 2DO k1 þ k2ð1þ cos 2tÞw2
0

� �
_w0; ð29aÞ

R ¼ � O2
0 €w0 þ 2O0 k1 þ k2 1þ cos 2tð Þw2

0

� �
_w0 þ 1� 2j0 cos 2t

� �
w0

� �
: (29b)

The second step is to find an approximate solution by assuming a periodic solution and applying
Galerkin’s method. The approximate functions w0 and Dw can be assumed as

w0ðtÞ ¼
X2N�1

k¼1;3;:::

ðak sin ktþ bk cos ktÞ and DwðtÞ ¼
X2N�1

k¼1;3;:::

ðDak sin ktþ Dbk cos ktÞ (30)

for the principal region of instability corresponding to a solution of period 2p: N is the number of
temporal terms for calculation. First three harmonic terms give results of high accuracy in the
study of Lau et al. [16].
Substituting Eq. (30) into Eq. (29a) and using Galerkin’s procedure, a set of linear equations

can be obtained as follows:

½C�fDag ¼ fRg þ DjfPg þ DOfQg; (31)

where ½C� is the matrix for the Fourier coefficients and fDag is a vector consisting of Fourier
coefficients Dak or Dbk; fRg is the corrective vector derived from Eq. (29b), and fPg and fQg are
vectors obtained from the second and third right-hand side terms, respectively.
From Eq. (31), a linear system of 2N equations with 2N+2 unknowns Da; Dj; and DO has to be

solved at each incremental step. Hence, it is necessary to add two constraints among Da; Dj; and
DO: The first constraint is Da1 ¼ 0 and the second constraint either Dj ¼ 0 or DO ¼ 0: In the
study, Dj ¼ 0 has been used as the second constraint, then DO is obtained by linear algebra
method.
4. Numerical results and discussions

Numerical simulations are performed for the dynamic instability and transient vibrations of a
pinned beam with transverse magnetic fields and thermal loads. The physical parameters of this
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system are given as

mr ¼ 3:0	 103 Hm�1; a ¼ 11	 10�6 �C�1; ar ¼ 6:5	 10�3 �C�1; m0 ¼ 1:26	 10�6 Hm�1;

W0 ¼ 9:68	 10�8 Omðohm-meterÞ:

4.1. The region of dynamic instability

Considering the beam thickness and deflection to be small compared to their length, the
equation of motion of a simply supported beam-plate in an alternating magnetic field without
damping had been derived by Moon and Pao [3] and is written as

d2w

dt2
þ o2

Lð1� 2Z cos 2$tÞw ¼ 0; (32)

where o2
L ¼ o2

0ð1� B2
r=B2

cÞ ¼ o2
0ð1� B̄

2
Þ; 2Z ¼ B2

m=ð2B2
c � B2

mÞ ¼ B̄
2
=ð1� B̄

2
Þ; B̄

2
¼ B2

m=2B2
c ¼

B2
r=B2

c ; and o2
0 is defined the same as in Eq. (26). As mentioned in Ref. [3], it is customary to

discuss these solutions on the ð$=oLÞ versus Z or the ð$=o0Þ
2 versus ðBr=BcÞ

2 plane and divide it
into regions of stability and instability. In order to evculate the accuracy of the analytical process
in this study, the parameter transformation is used to build the region of instability on the
ð$=o0Þ

2 versus ðBr=BcÞ
2 plane by replacing the derivative parameters O and j of the IHB method.

The results of instability in this study and the results studied in Ref. [3] are shown in Fig. 2. These
results are found to be in good agreement. Therefore, the equation of motion and the analytical
method considered in this study are reasonable.
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In this study, the main parameters that determine the responses of instability of the system are
the uniform increased temperature, magnetic filed, and damping ratio. As derived earlier for the
later thermal restraint, the critical buckling temperature is very easily achieved for slender sections
in structures. In this case, the critical buckling temperature of the first mode is DT cr ¼ 7:47 �C:
Now, one considers damping parameter k1 ¼ 0; then the different increased temperatures DT are
applied. The effect of increased temperature DT is shown in Fig. 3, where the principal region of
instability is shifted down, with increasing temperature from 0 to 5 1C, while ðB2

r=B2
cÞ þ

ðEAaDT=PcrÞo1: The variation of temperature can produce a large variety of responses.
Considering the different damping parameters k1 with DT ¼ 0; the regions of instability are shown

in Fig. 4. It shows that the region of instability decreases with increasing damping parameter k1: In this
study, it may be noted that the nonlinear damping coefficient B is proportional to the square of
amplitude, and the actual nonlinear damping constant of the system can be easily obtained from Eq.
(26). For instance, under the small deflection assumption, w=h ¼ 1:0; DT ¼ 1:0 �C; and Bm=0.2T
are applied. The fundamental natural frequency oL is 315.95 rad/s and the magnitude of the nonlinear
damping constant is 0.052kg/s, so that the nonlinear dimensionless damping parameter k2 now is
8:17	 10�5: Therefore, the effect of nonlinear damping on the region of instability is insignificant in
this study. The choice of linear viscous damping parameter k1 will be discussed in the next section.

4.2. The part of vibration

To determine the relationship between amplitude and time for the system with viscous
damping, the fourth-order Runge–Kutta method is applied to solve Eq. (26) with initial
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conditions. The step size is 2.0	 10–5. Initial conditions are chosen as w,t= 0 and w/h =1.0 at
t=0.
While the different magnetic fields Bm=0.1 , 0.3, 0.5T and $ ¼ 80 rad=s are applied with

k1 ¼ 0; the results of amplitude versus time are shown in Figs. 5(a)–(c). While Bm=0.2T, $ ¼

80 rad=s; k1 ¼ 0; and the different increased temperatures DT ¼ 1:0; 3.0, 5.0 1C are applied, the
results with the magnetic field and the increased temperature are shown in Figs. 6(a)–(c),
respectively. It can be seen from the waveforms presented that increasing the magnetic field or/and
temperature decreases the fundamental frequency of the system significantly. Therefore, the
period of vibration with the magnetic field or temperature increment is increased compared with
the system without the magnetic field or temperature increment. The changes of the fundamental
natural frequency oL due to a magnetic field increment and the temperature increment DT as
determined by solving Eq. (26) is shown. It is noted that the magnetic field increment increases the
damping effect which is related to the square of the amplitude. Also, the damping effect can be
related to the conductivity of the material as s ¼ 1=ðW0 þ W0arDTÞ:
The above cases are not considered as the dynamic instability, while damping parameters

k1 ¼ 0:0; DT ¼ 3:0 �C; and Bm=0.2T are applied. Based on Eq. (26), the fundamental natural
frequency of the system becomes 258.2 rad/s. According to the analysis of the dynamic instability,
the primary region of the dynamic instability occurs such that the ratio of excitation frequency
with respect to the natural frequency of the system closes to 1.0, when $ is applied by 250.5,
258.2, and 266.5 rad/s, individually; the results of the amplitude versus time are shown in Fig. 7.
From these waveforms, the beat phenomenon occurs in Figs. 7(a) and (c), and the resonance case
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occurs in Fig. 7(b). Bolotin [21] indicated that the intensity of the beats decreases appreciably as
the excitation frequency approaches the lower boundary of the unstable region. It can be seen in
Fig. 7(a) for the lower boundary of the dynamic instability. For the resonance case, the amplitude
of vibration becomes large and the damping cannot reduce the amplitude.
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For the same beam, k1 is increased up to 0.0125, then the results are shown in Fig. 8. It should
be noted that the previous beat phenomena in Figs. 7(a) and (c) become stable at this case because
the damping is used, but the resonance still occurs in Fig. 8(c) when$ ¼ 258:2 rad=s is used. If the
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excitation frequency $ ¼ 258:2 rad=s is used as a constant, the damping parameter k1 is increased
and replaced by 0.026, 0.029, and 0.032, individually, then the results are shown in Fig. 9. The
results show that the damping parameter k1=0.032 is used for the stable case, k1=0.026 is used
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for the resonance case, and k1=0.029 is used for the critical case between the stable and unstable.
The damping parameter k1=0.029 is located on the boundary of the region of instability where
the amplitude shows the steady-state motion nearly.



ARTICLE IN PRESS

0.0 0.4 0.8 1.2 1.6 2.0
-4.0

-2.0

0.0

2.0

4.0

A
m

pl
itu

de
 w

/h

-1.0

0.0

1.0

A
m

pl
itu

de
 w

/h

-1.0

0.0

1.0

A
m

pl
itu

de
 w

/h

(Sec)

0.0 0.4 0.8 1.2 1.6 2.0
(Sec)

0.0 0.4 0.8 1.2 1.6 2.0
(Sec)

(a)

(b)

(c)

Fig. 9. The transient vibrations of the system ðBm ¼ 0:2 T; DT ¼ 3:0 �C; and $ ¼ 258:2 rad=sÞ corresponding to

different values of damping parameter: (a) k1=0.026; (b) k1=0.029; and (c) k1=0.032.

G.Y. Wu / Journal of Sound and Vibration 284 (2005) 343–360358
5. Conclusions

In this study, the magnetoelastic model of a pinned beam with the thermal loads is derived by
means of Harmilton’s principle, the assummed mode shape, and Galerkin’s method. Using the
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IHB method, a linearized incremental equation is obtained and the instability analysis is
performed. In this small deflection analysis, the region of dynamic instability of a simply
supported beam in an alternating magnetic field is very close to the results derived by Moon and
Pao [3]. On the other hand, the transient vibratory behaviors are computed and discussed from
the equation of motion by using the fourth-order Rung–Kutta method. The results of this study
may be summarized as follows:
(1)
 Based on the assumption of the inextensible beam, the equation of motion in the transverse
magnetic field leads to a nonlinear damping effect which is proportional to the square of
amplitude. Also, the nonlinear damping effect is related to the conductivity of the material
which is varied with temperature.
(2)
 Each buckling mode has its own safe temperature increase and magnetic field increase. Under
the value of buckling, increasing either the transverse magnetic field or the thermal load leads
to a decreasing fundamental natural frequency.
(3)
 Though the value of increased temperature is not high enough to produce buckling for slender
sections in this study, the effect of thermal loads on the dynamic instability is obvious.
(4)
 While the different values of excitation frequency, $; for the magnetic field are on the
boundary of the region, in the region, and out of the region of dynamic instability, instability
and steady vibrations are evident.
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